How To Select All Columns That Start With "durations" Or "shape"?
How to select all columns that have header names starting with 'durations' or 'shape'? (instead of defining a long list of column names). I need to select these columns and substit
Solution 1:
You could use str
methods of dataframe startwith
:
df = data[data.columns[data.columns.str.startwith('durations') | data.columns.str.startwith('so')]]
df.fillna(0)
Or you could use contains
method:
df = data.iloc[:, data.columns.str.contains('durations.*'|'shape.*') ]
df.fillna(0)
Solution 2:
I would use the select
method:
df.select(lambda c: c.startwith('durations') or c.startswith('shape'), axis=1)
Solution 3:
Use my_dataframe.columns.values.tolist()
to get the column names (based on Get list from pandas DataFrame column headers):
column_names = [x for x in data.columns.values.tolist() if x.startswith("durations") or x.startswith("shape")]
Post a Comment for "How To Select All Columns That Start With "durations" Or "shape"?"